

MICROCONTROLLERS May 25, 2005

App Note 3546: Security System Control with the
MAXQ2000

Alarm control panels are a part of almost everyone's daily life, either at home
or at work. This article describes a sample alarm control application using
the MAXQ2000 Low-Power LCD Microcontroller, created with the MAX-IDE
development environment. The MAXQ2000 can be easily interfaced to
peripherals typically used in security applications, including LCD displays,
PIN entry keypads, piezoelectric horns and buzzers, and magnetic reed
switches.

Common alarm-control panels contain several input devices and require user displays. The
usual components for these systems include:

● A device to accept input from the user: a 4 x 4 switch keypad.
● A device to display output to the user: an LCD display.
● An input device: a magnetic reed switch.
● An output device: a piezoelectric horn.

These several components can be managed and controlled by a simple application and the
powerful, flexible MAXQ2000 microcontroller. This application, available for download, was
written in MAXQ assembly language using the MAX-IDE development environment. The code
was targeted for the MAXQ2000 evaluation kit board, using the following additional hardware:

● Keypad: Grayhill 16-button (4 rows by 4 columns) keypad 96BB2-006-F
● Piezoelectric horn: CEP-1172
● Magnetic reed switch: standard single-loop type

Design Goals
Our example application performs the following tasks:

● Monitors the magnetic reed switch to determine if a door/window is open or closed.
● Allows the user to arm or disarm the system by entering a PIN on the keypad.
● Displays status information to the user on the LCD.
● Provides audio indications of keypresses and sensor open/close events by sounding the

piezoelectric horn.
● Sounds the horn continuously if the sensor is opened while the system is armed. The

http://www.maxim-ic.com/appnotes10.cfm/ac_pk/17/ln/en
http://www.maxim-ic.com/MAXQ2000_Alarm

behavior of the alarm control application consists of four discrete states: CLOSED,
OPEN, SET, and ALERT (Figure 1).

Figure 1. The alarm control application operates in four main states: CLOSED, OPEN, SET,
AND ALERT.

Interfacing to the Magnetic Reed Switch
In an alarm system, magnetic reed switches are installed in two parts: a magnet and the actual
reed switch. The magnet portion is placed on the moving section of a door or window, while the
switch portion is placed on the frame. When the door or window is closed, the magnet closes the
reed switch, indicating a nonalarming condition. If the system is armed and the window or door
is opened, the reed switch changes state, allowing the MAXQ2000 to sound an intrusion alert.

The reed switch is interfaced to the MAXQ2000 simply by connecting it between port pins P5.2
and P5.3. With P5.2 set to an active-low pulldown (PD = 1, PO = 0) and P5.3 set to a weak
pullup input (PD = 0, PO = 1), P5.3 will read zero when the reed switch is closed and one when
the reed switch is open.

 move PD5.2, #1 ; Drive one side of reed switch LOW
 move PO5.2, #0

 move PD5.3, #0 ; Set weak pullup high on other side
 move PO5.3, #1

...

ML_Closed_Check:
 move C, PI5.3
 jump NC, ML_Closed_L ; Switch is closed, continue in this state

 call ShortBeep
 call ShortPause
 call ShortBeep
 call ShortPause
 call ShortBeep
 call ShortPause
 call ShortBeep
 call ShortPause
 jump ML_Open ; Switch is open, transition to OPEN state

Interfacing to the 4 x 4 Keypad
Keypads are used in alarm control systems for secure PIN entry, to arm/disarm the system, and
to change configurations. The keypad used in this example application consists of 16 switches,

organized in a 4 x 4 grid. The switches are tied together in a row and column matrix (Figure 2)
so that depressing a keypad switch connects one row line to one column line. For example,
depressing the "3" key connects row 1 and column 3 together.

Figure 2. The keypad switches form a grid of four rows and four columns.

The keypad provides eight interface pins, one pin for each row and column of the keypad matrix.
The keypad and the MAXQ2000 EV kit are connected as shown.

Pin Connect Port Pin JU2 Pin

1 Row 1 P6.0 54

2 Row 2 P6.1 52

3 Row 3 P6.2 50

4 Row 4 P6.3 48

5 Col 1 P6.4 46

6 Col 2 P6.5 44

7 Col 3 P7.0 42

8 Col 4 P7.1 40

For this application, the EV kit board should be configured as follows.

● DIP switches.

❍ The following switches must be OFF: All SW1 switches, SW3.1, SW3.7, SW3.8,
SW6.1, SW6.4, SW6.5, SW6.6, SW6.7, and SW6.8.

❍ All other DIP switches can be in any state.
● Jumpers

❍ The following jumpers must be OPEN: JU5, JU6, JU8, and JU9.
❍ The following jumpers must be CLOSED: JU1, JU2, JU3 and JU11.
❍ All other jumpers can be in any state.

Scanning by Columns
The row and column arrangement of the keypad makes it easy to read the state of four switches
at any one time, on either a row or column basis. To read four switches in one column, first the
line for that column must be pulled low, and all other columns tri-stated (Figure 3). Next, a weak
pullup must be set on each row line. Finally, the four row lines are connected to port pin inputs.
The input from a row will be low when the switch on that row is depressed, and high otherwise.

Similarly, the state of four switches in a row can be read by pulling that row line low and setting
inputs and weak pullups on all four columns. The rows and columns are interchangeable.

In our setup, the four row lines (keypad pins 1 through 4) are all connected to the same input
port (P6[3:0]), which makes it easier to read them simultaneously. For this reason, the example
application scans one column of switches at a time. There are four setup states for the eight port-
pin lines connected to the keypad, each of which allows four of the switches to be read. All input
lines read low when the switch being read is closed, and high when the switch is open.

STATE P6.0 P6.1 P6.2 P6.3 P6.4 P6.5 P7.0 P7.1

1 Input - 1 Input - 4 Input - 7 Input - * low tri-state tri-state tri-state

2 Input - 2 Input - 5 Input - 8 Input - 0 tri-state low tri-state tri-state

3 Input - 3 Input - 6 Input - 9 Input - # tri-state tri-state low tri-state

4 Input - A Input - B Input - C Input - D tri-state tri-state tri-state low

Figure 3. The MAXQ2000 pulls column 1 low to read the state of the first four keypad switches.

An Interrupt-Driven State Machine
The four columns must be strobed quickly so that any keypress has time to be read before it is
released. Additionally, to prevent a switch's bouncing contacts from registering multiple presses,
a key must be held down for a certain amount of time before it registers. Both of these factors
can be done at once by making a timer-driven interrupt routine the heart of the application. This
allows the application to scan through each one of the four columns in a periodic manner and to
count the length of time a key has been depressed.

RELOAD equ 0FF00h

StartTimer:
 move IIR.3, #1 ; Enable interrupts for module 3
 move IMR.3, #1

 move T2V0, #RELOAD
 move T2R0, #0h
 move T2C0, #0h

 move Acc, T2CFG0 ; Set timer 0 to run from HFClk/128
 and #08Fh
 or #070h
 move T2CFG0, Acc

 move T2CNA0.3, #1 ; Start timer 0
 move T2CNA0.7, #1 ; Enable timer 0 interrupts
 ret

The reload value for the timer controls how often the interrupt will fire. This value must be short
enough so that all keypresses are recognized. Additionally, to ensure that key response is not
sluggish, the reload value must also be long enough so that it does not occupy an excessive
amount of processing time. The value 0FF00h shown above (once about every 2.4ms) was
reached through experimentation.

Once the column line for a group of four switches is driven low, some time may be required for
the connection operating through a depressed switch to pull its input line low. This time is
affected by the switch's on-resistance and by how many column switches are depressed at
once. To avoid having to delay the interrupt service routine between pulling the column line low
and reading the four switches, the column line for a given state is driven low in the previous
state (Figure 4).

Figure 4. In each of the four key-scanning states, the application reads the status of four
switches and prepares to read the next four.

Because the interrupt vector (IV) for the MAXQ2000 can be set on-the-fly, the application holds
the next-state value in the interrupt vector register. Whenever the timer interrupt fires, the
handler routine for the current key-scanning state sets the interrupt vector address to the next
state's handler routine.

org 0000h

Main:
 call InitializeLCD

 move PD6, #010h ; For state 1
 move PO6, #00Fh ; For all states
 move PD7, #000h ; For state 1
 move PO7, #000h ; For all states

 move IV, #State1
 call StartTimer
 move IC, #1 ; Enable global interrupts

 jump $

State1:
 push PSF
 push Acc

 move Acc, PI6
 and #000Fh ; Grab lowest four bits only
 sla4
 move A[13], Acc

 move PD6, #020h ; For state 2
 move PD7, #000h

 move T2V0, #RELOAD ; Set reload value
 move T2CNB0.1, #0 ; Clear interrupt flags
 move T2CNB0.3, #0
 move IV, #State2

 pop Acc
 pop PSF

 reti

The handler routines for the other four states are similar, with a slight adjustment to OR in the
previously collected switch bits in the A[13] holding register. There are three working
accumulators used by the state routines.

A[13] holds the bit array of all the switch states read on the current pass through the keypad.
After the State 4 read completes, this register contains the following bits, where a one bit
represents an open (released) key switch and a zero bit represents a closed (depressed) key
switch.

BIT
15

BIT
14

BIT
13

BIT
12

BIT
11

BIT
10

BIT
9

BIT
8

BIT
7

BIT
6

BIT
5

BIT
4

BIT
3

BIT
2

BIT
1

BIT
0

* 7 4 1 2 5 8 0 3 6 9 # D C B A

Debouncing Switches
After State 4 is reached and all keys are scanned, a decision must be made whether to accept
any keys that are pressed. A simple way to handle debouncing is to maintain a counter value for
each of the 16 switches. Every time State 4 is reached and the key is pressed, the counter is
incremented. If the key is not pressed, the counter is decremented. When the counter reaches a
certain value, the keypress is registered. To prevent a held-down key from repeating (which

typically is allowed on computer keyboards, but not on keypads), the counter must be allowed to
decrement back to zero (by releasing the key) before that key may be registered again.

As we have the state of all 16 keys in a single register, there is a simpler, less memory-intensive
solution for debouncing. The application maintains a single counter value that is incremented
each time the bit pattern matches the pattern read on the previous pass.

State4:
 push PSF
 push Acc

 move Acc, PI6
 and #000Fh ; Grab low four bits only
 or A[13]
 cmp A[15]
 jump E, State4_End ; Ignore the last debounced pattern

 cmp A[14]
 jump E, State4_Match

 move LC[0], #DEBOUNCE
 move A[14], Acc ; Reset current bit array

To prevent keys from repeating, once a bit pattern has been static long enough to be accepted,
a different bit pattern (which includes the idle state where no keys are depressed) must be
accepted before the first bit pattern can be accepted again.

Handling Simultaneous Keypresses
Simultaneous keypresses are possible when using a keypad input device. The debouncing code
ensures that if a second key is pressed right after the first, the debounce interval will start over,
but be short enough in practice so that this is not an issue.

Once a bit pattern has been accepted, the action for each depressed-key bit can be taken by
rotating all 16 bits into the carry bit individually using the accumulator and checking each in turn.
The following code responds only to the first depressed key, but this could be easily changed.

State4_Match:
 djnz LC[0], State4_End
 move A[15], Acc ; Reset last debounced pattern

 rrc
 jump NC, State4_KeyA
 rrc

 jump NC, State4_KeyB
 rrc
 jump NC, State4_KeyC
 rrc
 jump NC, State4_KeyD

 rrc
 jump NC, State4_Key3
 rrc
 jump NC, State4_Key6
 rrc
 jump NC, State4_Key9
 rrc
 jump NC, State4_KeyPound

 rrc
 jump NC, State4_Key2
 rrc
 jump NC, State4_Key5
 rrc
 jump NC, State4_Key8
 rrc
 jump NC, State4_Key0

 rrc
 jump NC, State4_Key1
 rrc
 jump NC, State4_Key4
 rrc
 jump NC, State4_Key7
 rrc
 jump NC, State4_KeyStar

 jump State4_End

Interfacing to the LCD Display
The LCD display included with the MAXQ2000 EV kit has segments defined as shown (Figure
5).

Figure 5. The LCD display contains four-and-a-half 7-segment characters.

First, the LCD display must be initialized to static drive mode and enabled. Once this has been
done, characters can be written to the display by setting segments appropriately.

InitializeLCD:
 move LCRA, #03E0h ; xxx0001111100000
 ; 00 - DUTY : Static
 ; 0111 - FRM : Frame freq
 ; 1 - LCCS : HFClk / 128
 ; 1 - LRIG : Ground VADJ
 ; 00000 - LRA : RADJ = max

 move LCFG, #0F3h ; 1111xx11
 ; 1111 - PCF : All segments enabled
 ; 1 - OPM : Normal operation
 ; 1 - DPE : Display enabled

 move LCD0, #00h ; Clear all segments
 move LCD1, #00h
 move LCD2, #00h
 move LCD3, #00h
 move LCD4, #00h
 ret

Entering the PIN
In the CLOSED, SET, and ALERT states, a PIN can be entered to change the alarm controller
to another state. As each character is entered, the working value held in A[10] is shifted left and
ORed with the new character, and the decimal point on the LCD display moves left to indicate
the number of characters entered. For security reasons, the PIN being entered is not shown on
the display.

State4_Key0:
 move Acc, #0000h
 jump State4_Shift

State4_Key1:
 move Acc, #0001h
 jump State4_Shift

State4_Key2:
 move Acc, #0002h
 jump State4_Shift

....

State4_Shift:
 move A[12], Acc

 move Acc, A[10]
 cmp #0FFFFh ; flag indicating no PIN entry allowed
 ; in current state
 jump E, State4_NoKey

 move Acc, A[11] ; key count
 cmp #04 ; if already at 4 (should have been cleared)
 jump E, State4_NoKey

 add #1
 move A[11], Acc

 move Acc, A[10]
 sla4
 or A[12]
 move A[10], Acc

Once all four characters are entered, the PIN is checked against a hard-coded value. If the
entered value matches the PIN, the appropriate state transition occurs.

PIN_VALUE equ 03870h ; Just a random number

;; "Closed" state code

ML_Closed:
 move A[10], #00000h ; Reset PIN value
 move A[11], #0 ; Reset number of PIN chars entered

 move LCD3, #LCD_CHAR_C
 move LCD2, #LCD_CHAR_L
 move LCD1, #LCD_CHAR_5
 move LCD0, #LCD_CHAR_D

ML_Closed_L:
 move Acc, A[11]
 cmp #4 ; 4 characters entered?
 jump NE, ML_Closed_Check

 move Acc, A[10]
 cmp #PIN_VALUE ; PIN matches?
 jump E, ML_Set

 call LongBeep ; Beep on incorrect PIN and reset
 move A[10], #0000h
 move A[11], #0
 move LCD3.7, #0

ML_Closed_Check:
 move C, PI5.3 ; Check reed switch
 jump NC, ML_Closed_L ; Closed, stay in current state

 call ShortBeep ; 4 short beeps signal transition
 call ShortPause
 call ShortBeep
 call ShortPause
 call ShortBeep
 call ShortPause
 call ShortBeep
 call ShortPause
 jump ML_Open ; Switch opened, go to OPEN state

Using the Piezoelectric Horn
In our application, a small piezoelectric horn is used to perform two functions: (1) provide audio
feedback when keys are pressed or when an incorrect PIN is entered, and (2) sound an alarm
when the reed switch opens while the system is armed.

For demonstration purposes, a small piezoelectric horn can be interfaced with the MAXQ2000
by connecting it between two port pins. The port pins are driven differentially to increase the
current drive to the piezoelectric horn, and the loop counts used in the driver code determine the
frequency of the tone emitted.

ShortBeep:
 move LC[1], #100 ; Number of cycles
SB_L1:
 move PO5.6, #0
 move PO5.7, #1

 move Acc, #2000 ; Count for forward polarity period

SB_L2:
 sub #1
 jump NZ, SB_L2

 move PO5.6, #1
 move PO5.7, #0

 move Acc, #2000 ; Count for reverse polarity period
SB_L3:
 sub #1
 jump NZ, SB_L3

 djnz LC[1], SB_L1
 ret

In an actual alarm system, stronger drive circuitry would be used to run the piezoelectric horn,
and the horn would be driven at its resonant frequency to increase the volume.

Conclusion
The MAXQ2000 interfaces easily and directly to LCD displays by means of its dedicated LCD
controller peripheral. Multiplexed keypads can be read in a straightforward manner using the
flexible port-pin configuration provided by the MAXQ2000. A timer-interrupt-driven state machine
allows all keys in the matrix to be scanned and debounced with minimal effect on processor
overhead. Finally, a piezoelectric horn and magnetic reed switch can be controlled easily as
well, using the general-purpose port pins available on the MAXQ2000.

This article appears in the MER Vol 5.

More Information

MAXQ2000: QuickView -- Full (PDF) Data Sheet -- Free Samples

MAXQ2000-KIT: QuickView -- Full (PDF) Data Sheet

http://www.maxim-ic.com/quick_view2.cfm/qv_pk/4466/ln/en
http://pdfserv.maxim-ic.com/en/ds/MAXQ2000-MAXQ2000-RBX.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=MAXQ2000&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/4478/ln/en
http://pdfserv.maxim-ic.com/en/ds/MAXQ2000-KIT.pdf

